Classification of stroke patients using data mining with adaboost, decision tree and random forest models
نویسندگان
چکیده
A stroke is a fatal disease that usually occurs to the people over age of 65. The treatment progress medical field growing rapidly, especially with technological advance, emergence various record data sets can be used in records identify trends these using mining. purpose this study was propose model classify survivors mining, by utilizing from kaggle sharing dataset. models proposed were AdaBoost, Decision Tree and Random Forest, evaluation results Confusion Matrix ROC Analysis. obtained decision tree able provide best accuracy compared other models, which 0.953 for Number Folds 5 10. From study, good classification sufferers.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولForest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملPrivacy Preserving Data Mining using Random Decision Tree
Data processing with information privacy and information utility has been emerged to manage distributed information expeditiously. In this paper, to deal with this advancement in privacy protective data processing technology victimization intensify approach of Random Decision Tree (RDT). Random Decision Tree provides higher potency and information privacy than Privacy secured Data mining Techni...
متن کاملSurvival of Dialysis Patients Using Random Survival Forest Model in Low-Dimensional Data with Few-Events
Background:Dialysis is a process for eliminating extra uremic fluids of patients with chronic renal failure. The present study aimed to determine the variables that influence the survival of dialysis patients using random survival forest model (RSFM) in low-dimensional data with low events per variable (EPV). Methods:In this historical cohort study, infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ilkom Jurnal Ilmiah
سال: 2022
ISSN: ['2087-1716', '2548-7779']
DOI: https://doi.org/10.33096/ilkom.v14i3.1328.218-228